
www.manaraa.com

Primer3 on the WWW 365

365

From: Methods in Molecular Biology, vol. 132: Bioinformatics Methods and Protocols
Edited by: S. Misener and S. A. Krawetz © Humana Press Inc., Totowa, NJ

20

Primer3 on the WWW for General Users
and for Biologist Programmers

Steve Rozen and Helen Skaletsky

1. Introduction
Designing PCR and sequencing primers are essential activities for mole-

cular biologists around the world. This chapter assumes acquaintance with the
principles and practice of PCR, as outlined in, for example, refs. 1–4.

Primer3 is a computer program that suggests PCR primers for a variety of
applications, for example to create STSs (sequence tagged sites) for radiation
hybrid mapping (5), or to amplify sequences for single nucleotide polymor-
phism discovery (6). Primer3 can also select single primers for sequencing
reactions and can design oligonucleotide hybridization probes.

In selecting oligos for primers or hybridization probes, Primer3 can con-
sider many factors. These include oligo melting temperature, length, GC con-
tent, 3′ stability, estimated secondary structure, the likelihood of annealing to
or amplifying undesirable sequences (for example interspersed repeats), the
likelihood of primer–dimer formation between two copies of the same primer,
and the accuracy of the source sequence. In the design of primer pairs Primer3
can consider product size and melting temperature, the likelihood of primer–
dimer formation between the two primers in the pair, the difference between
primer melting temperatures, and primer location relative to particular regions
of interest or to be avoided.

1.1. Primer3 Can Be Used Through its WWW Interface
or as a Software Component

Most casual users will prefer Primer3’s WWW interface (Fig. 1), which is
suitable for selecting primers from a few sequences. Subheading 2. discusses
this interface in detail.

www.manaraa.com

366 Rozen and Skaletsky

Scientists who must select primers for hundreds or thousands of sequences
will prefer to use Primer3 (specifically the primer3_core program) as a soft-
ware component, which accepts input in a format convenient for other pro-
grams to produce and generates output in a format convenient for other
programs to interpret. (We assume that no one would want to deal manually
with primer picking results for hundreds or thousands of sequences.) We
present examples of the use of primer3_core as a software component in
Subheading 3. The underlying primer design process is identical for both the
WWW interface and primer3_core, and in fact the WWW interface uses the
WWW CGI protocol (9,10) layered on top of primer3_core.

Fig. 1. Top of Primer3’s WWW input page without user input.

www.manaraa.com

Primer3 on the WWW 367

In a few cases it will be preferable to modify primer3_core itself rather than
simply use it as a software component. Therefore, for maximum portability
and modifiability we wrote it in standard ANSI C (7) using standard POSIX
calls (8) with simple and universally usable ASCII input and output. Further-
more, the distribution includes a thorough set of tests for primer3_core, which
make it relatively easy to ensure that modifications do not introduce errors.

Although the WWW interface is adequately self-explanatory for many
casual users, for others the background information we present here will be
helpful. For potential high-volume users, customizers, and biologist program-
mers, this chapter introduces the use of primer3_core to streamline the particu-
lar primer-picking tasks at hand.

1.2. Where to Find Primer3

Public WWW interfaces for use by anyone with a Web browser (for example
Netscape) are reachable from http://www.genome.wwi.mit.edu/
cgi-bin/primer/info.cgi. You can also download the Primer3 pro-
grams from this location. The program primer3_core is available in source
form only, and generating an executable program requires a C compiler; see
Subheading 3.1. for details. The source code for the WWW interface is also
available and can be used on computers running a Web server. The WWW
interface (like primer3_core) can be modified to meet the needs of particular
sets of end-users. It is written in perl, the language of choice for this sort of
application (11).

1.3. What Primer3 Does not Offer

We regret that we do not have resources to distribute Primer3 in ready-to-
run executable form, with “native” front ends (e.g., for Microsoft Windows or
Mac), or on tape, diskette, or CD. Other primer selection software is available
in fully supported commercial form (though possibly not as a customizable
software component). Examples include OLIGO®, available through Molecu-
lar Biology Insights, Inc., Cascade, Colorado, http://www.mbinsights.
com/, (see also ref. 12), DNAStar’s PrimerSelect module for LaserGene
(http://www.dnastar.com/), and the Prime module in Genetics Com-
puter Group’s Wisconsin Package. Primer selection programs available from
academic institutions include Primer 0.5 (upon which Primer3 was based, but
available as a stand-alone program and as a ready-to-run executable for Macs
and PCs) (13), and OSP–oligonucleotide selection program (14).

The following tasks are not built in to Primer3:

• Automatically adding standard 5′ tails to each primer.
• Selecting nested primer pairs.

www.manaraa.com

368 Rozen and Skaletsky

• Selecting primer pairs for multiplex amplification.
• Designing a tiling of amplicons across a sequence.
• Picking primers from a reverse-translated amino acid sequence.

(However, we have used primer3_core as a software component in conjunc-
tion with other codes to accomplish each of these tasks but the last.) The pack-
ages mentioned above perform some of these tasks.

1.4. PCR and Primer Design Applications Are Diverse

Primer design is really many different problems. Sometimes one wishes to
design primers for a large number of sequences, and if for some reason it is
difficult to find good primers for a particular source sequence one simply dis-
cards that source sequence. An example would be high-throughput whole
genome mapping (the application for which Primer3 and its predecessors were
originally designed). In this case one designs STSs from tens of thousands of
sequences and then uses these STSs in hundreds of amplifications. In this
application no one sequence is particularly valuable compared to the cost of
primers and subsequent amplifications, so it is not worth proceeding with a
sequence for which there are only dubious primer pairs.

In other applications one wishes to design primers to amplify a particular
sequence if at all possible; if there are no obvious good primers one will choose
several possibilities in the hope that at least one will work. Examples include
designing primers to distinguish two very similar sequences or to amplify a
particular exon flanked by a CpG island in which it is hard to find a good
primer. In this situation the precious resource is the particular sequence to
amplify, and the scientist is willing to spend considerable effort getting a clean
amplicon.

There are many other variables in primer-design goals. Sometimes one wants
large amplicons (for example to amplify as much of a cDNA as possible), and
sometimes one wants very short amplicons (for example to flank a single nucle-
otide polymorphism as closely as possible). Sometimes the amplification tem-
plate is complex (for example a mammalian genome), and sometimes it is simple
(for example a single bacterial artificial chromosome). Some Taq formulations
are less likely than others to produce primer dimers or self-priming hairpins.

Because primer design is really many different problems Primer3 gives users
numerous options to specify which primers are acceptable and which primers
are better than others. The number of these options can be overwhelming to
new and experienced users alike, but typically for any particular application
only a few need changing from default values.

This chapter cannot discuss all of Primer3’s options, but it covers those you
are most likely to change. The WWW interface and the README distributed
with the program document the more esoteric options.

www.manaraa.com

Primer3 on the WWW 369

2. Primer3 from the End-User Perspective
This section refers primarily to the WWW interface, which calls upon

primer3_core to perform almost all of the work of selecting primers.
Primer3 takes as input a sequence and selects single primers or PCR primer

pairs. Figure 2 shows example input in the WWW interface. The user has
pasted the source sequence into the large data-entry field near the top of the
page, selected the RODENT Mispriming Library and entered a Sequence Id
(“Example Sequence 1”) and a Target (“40, 78”).

Fig. 2. Primer3’s WWW input page after the user has entered sequence, a
“Sequence Id,” and a “Target.”

www.manaraa.com

370 Rozen and Skaletsky

Below the field for the source sequence are three check boxes labeled Pick
left or use left primer below, Pick hybridization probe (internal oligo) or
use oligo below, and Pick right primer or use primer below. . . . These check
boxes govern whether Primer3 tries to design a primer pair, a primer pair plus
hybridization probe, or an individual primer (e.g., for sequencing) or hybrid-
ization probe. In Fig. 2 the Pick left... and Pick right... boxes are checked, so
Primer3 will select PCR primer pairs.

Below each of these three check boxes is an input box. Placing an oligo in
one of these boxes instructs Primer3 to evaluate that oligo and choose match-
ing oligos (depending on the check boxes).

After the user clicks on any of the Pick Primers buttons in the input page
(Fig. 2) Primer3 returns suggested primers as shown in Fig. 3. Subheading
2.2. discusses the interpretation of this output in detail; Subheading 2.3.
suggests some strategies for proceeding when Primer3 is unable to find any
acceptable primers or primer pairs.

The label for each input option is a link to documentation on the meaning
of the option and how Primer3 uses it. For example, clicking on Max End
Stability takes one to the following documentation:

The Max Mispriming and Pair Max Mispriming input fields are impor-
tant in many situations because the source sequence might contain one of the
interspersed repeats (ALUs, LINEs, and others) that make up more than 35%
of the human genome (15). The user should either replace these sequences by
Ns before picking primers or should select a Mispriming library. (Not all
mispriming is strictly speaking caused by repeats; it could be any sequence
that one does not wish to inadvertently amplify.) However, the WWW inter-
face at the www.genome.wi.mit.edu web site only offers repeat libraries
for human and for mouse and rat (RODENT).

The maximum primer length is restricted because the nearest neighbor
melting temperature model agrees well with reality only for relatively short
sequences (16,17).

2.1. How Primer3 Picks Primers

Primer3 accepts many options that specify which primers are acceptable
and which primers are better than others. In the WWW interface the user selects

www.manaraa.com

Primer3 on the WWW 371

these options through text boxes, check boxes, and pull-down menus. For
example in Fig. 2 these include the Mispriming Library pull down (above the
sequence input field), Product Size Min, Opt, and Max input fields, and all
the input fields beneath the General Primer Picking Conditions heading.

Some options specify which primers are acceptable. For example to the left
of Product Length the Min and Max options set lower and upper bounds on
the length of products. Such options are called constraints because they

Fig. 3. Output from Primer3’s WWW interface when primers have been found.

www.manaraa.com

372 Rozen and Skaletsky

constrain the set of acceptable primer pairs. Other options that specify con-
straints include Primer Tm Min and Max, Max End Stability, and Max
Mispriming. (Tm is an abbreviation for “melting temperature”.)

Other options specify characteristics of the optimum output primers or
primer pairs (beyond specifying those that are simply acceptable). Examples
include the Product Length Opt (Optimum) and the Primer Tm Opt inputs.
Roughly speaking, if Product Length Opt is specified Primer3 tries to pick a
pair of primers that produce an amplicon of approximately the specified length.
For some options the user need not specify the optimum value because Primer3
can take it for granted; for example there is no input field for the optimum
mispriming library similarity, which Primer3 assumes to be 0.

Primer3 examines all primer pairs that satisfy the constraints and finds pairs
that are closest to the optimum. How does Primer3 calculate how close a primer
pair is to the optimum? By default the WWW interface tries to balance equally
primer length, primer melting temperature, and product length. (For compat-
ibility with earlier versions primer3_core by default uses only primer length
and primer melting temperature.)

However, to accommodate the diversity of primer picking applications
Primer3 is flexible in the formula it uses to calculate how close a primer or
primer pair is to the optimum. The technical term for this formula is objective
function. Thus, suppose you deem the difference in melting temperature
between the two primers to be more important than their lengths, melting tem-
peratures, and the product size. Then you can use the Objective Function
Weights... sections of the input page (as partially shown in Fig. 4) to tell
Primer3 to use these considerations in calculating optimality. In Fig. 5 this
effect is accomplished by the values in the fields labeled Product Size Lt and
Gt, Tm Difference, and Primer Penalty Weight. (Primer Penalty Weight is
an adjustment factor for the entire per-oligo contribution to the objective func-
tion. More details are available in the online documentation.)

2.2. Interpreting the Output when Primers are Found

Please refer to Fig. 3. The top of the output displays the sequence id
(Example Sequence 1) and a number of informational notes. The next part of
the output displays the best left and right primers, and their characteristics
(starting position, length, melting temperature, and so forth). Then the output
displays information specific to the input sequence and the selected pair.

The next information is a quasi-graphical representation of the location of
the left (>>>>> ...) and right (<<<<< ...) primers in the source sequence, as
well as any important features of the source sequence, in this example only the
position of the target (marked by asterisks***** ...). Following the sequence is
information for some number of additional primer pairs. (The user can control

www.manaraa.com

Primer3 on the WWW 373

the number returned by entering a different value in the Number to Return
input field.)

Finally the output contains a section headed Statistics, which we discuss in
detail below.

2.3. What if There Are no Acceptable Primers?

Recall from Subheading 1.3. that in some situations one wants only good
primers for uniform conditions and would rather discard some source sequence
than deal with dubious primers. Most of Primer3’s default option values
are tuned to suit these situations: constraints are strict. Given strict constraints
the specifics of the objective function are not critical because any acceptable

Fig. 4. The part of Primer3’s WWW interface that allows modification of the
objective function. In this example “Product Size Lt” and “Gt,” “Tm Difference,” and
“Primer Penatly Weight” have been changed from the defaults.

www.manaraa.com

374 Rozen and Skaletsky

primer or primer pair will be reasonably good, but potentially usable primers
might be rejected as unacceptable.

In other situations, however, one must design primers for a given sequence
at almost any cost. Suppose you are faced with such a situation, and Primer3
cannot find acceptable primers given the default constraints. In this case
Primer3 will return a screen similar to that shown in Fig. 6.

Then what? The most intuitive course is to relax the constraints that you
think are least important in your particular situation and that are most likely
preventing any primers or primer pairs from being acceptable. The Statistics

Fig. 5. Primer3’s WWW interface in which the “Primer Tm Min” and “Primer Tm
Max” constraints have been made completely liberal.

www.manaraa.com

Primer3 on the WWW 375

section at the bottom of the output indicates reasons that individual primers are
unacceptable. In the example above it is clear that the main problem is that all
acceptable left primers have too high a melting temperature (as indicated by
the column headed tm too high).

A word of caution: Primer3 never considers a primer that is unacceptable
because of its position. Thus, if a primer is outside of the included region or
can never be acceptable given the length of the sequence, the position of any
specified “included region” and targets and the range of allowable product sizes
then it is not counted in the considered column. If it seems as though very few
primers are even being considered, you might want to modify your maximum

Fig. 6. Output from Primer3’s WWW interface when no primers were found.

www.manaraa.com

376 Rozen and Skaletsky

and minimum product size options, or expand the included region. An example
of such a situation is the following, in which no left primers are considered:

The Pair Stats: section indicates reasons that pairs of primers (as opposed
to single primers or oligos) are rejected. For example, there might only be a
few acceptable primers, all of which when paired would create a product with
too low or too high a melting temperature.

Examining the Statistics (and less commonly) the Pair Stats: sections
should suggest constraints that if relaxed would allow primers to be chosen.

In some cases (especially when relaxing several constraints at once) it might
be desirable to also modify the objective function to reflect specific primer
design objectives. In the sequence in Fig. 6, the temperatures of all possible
left primers are too high. One way to proceed is to incrementally relax what
seem to be the limiting constraints, for example increasing the Primer Tm
Max option until an acceptable left primer is found. Alternatively, it can be
more expeditious to simply relax the limiting constraint totally, as in Fig. 5, in
which the Primer Tm Min and Max are set to 0 and 100° C, respectively. The
primer pair selected with these relaxed constraints is:

And the Statistics are

Now there are acceptable primer pairs but a large difference in melting tem-
peratures between the left and right primers. To reduce this difference one can
include it as part of the objective function, as shown in Fig. 4. After this adjust-
ment, Primer3 selects the following primer pair:

www.manaraa.com

Primer3 on the WWW 377

3. Primer3 for Biologist Programmers
3.1. Installation Instructions

The source distribution is available as a UNIX “tar” archive, which can be
managed by the UNIX tar utility, by the Windows / Windows NT WinZip utility
(Nico Mak Computing; http://www.winzip.com/winzip.htm) or by
the Mac DropStuff with Expander Enhancer utility www.aladdinsys.com.
To run primer3_core you will first need to compile it using an ANSI C com-
piler with POSIX libraries and run the tests supplied with the distribution as
documented in the README.

3.2. Examples of How to Use primer3_core
as a Software Component

In this section we present two examples of using primer3_core as a soft-
ware component. The code for these examples is available in the Primer3
distribution.

3.2.1. Using primer3_core with UNIX Pipes

The first example is a relatively lightweight application of the kind that
requires only a minimum of perl scripting experience.

This example shows how to postprocess primer3_core’s output to complete
an oligo design task. The example task is the specification of “overgos” (John
D. McPherson, pers. comm.), in which a 36-mer double-stranded hybridization
probe is constructed from annealing overlapping 22-mers and filling in the
singled stranded tails:

Specifically, we will show code that takes an existing primer pair and then
designs an overgo that will hybridize to the site amplified by that primer pair.
Here is the UNIX command line one would use:

prompt> ./primer3_core < input | ./overgo.pl

In this command line primer3_core runs first, taking its input from the file
“input”, whereas its output is sent directly to the perl program overgo.pl via a

www.manaraa.com

378 Rozen and Skaletsky

UNIX pipe (specified by the vertical bar, ‘|’, on the command line). The input
could be prepared by hand in a text editor or (more likely) produced by another
program. It has the form of tag=value pairs, a format dubbed Boulder-IO (18):

PRIMER_SEQUENCE_ID=Overgo Example
PRIMER_PICK_INTERNAL_OLIGO=1
PRIMER_INTERNAL_OLIGO_MAX_MISHYB=36
PRIMER_INTERNAL_OLIGO_MIN_SIZE=36
PRIMER_INTERNAL_OLIGO_MAX_SIZE=36
PRIMER_INTERNAL_OLIGO_OPT_SIZE=36
PRIMER_INTERNAL_OLIGO_MIN_TM=10
PRIMER_INTERNAL_OLIGO_MAX_TM=90
PRIMER_INTERNAL_OLIGO_OPT_TM=70
PRIMER_INTERNAL_OLIGO_SELF_ANY=30
PRIMER_INTERNAL_OLIGO_SELF_END=30
PRIMER_INTERNAL_OLIGO_MISHYB_LIBRARY=humrep
PRIMER_PRODUCT_SIZE_RANGE=70-1000
PRIMER_EXPLAIN_FLAG=1
PRIMER_PAIR_WT_IO_QUALITY=1
PRIMER_PAIR_WT_PR_QUALITY=0
PRIMER_IO_WT_REP_SIM=1
PRIMER_IO_WT_TM_GT=0
PRIMER_IO_WT_TM_LT=0
PRIMER_IO_WT_SIZE_GT=0
PRIMER_IO_WT_SIZE_LT=0
PRIMER_NUM_RETURN=1
PRIMER_LEFT_INPUT=GAAATGTGTCCTTCCCCAGA
PRIMER_RIGHT_INPUT=GAGTTCACCCATACGACCTCA
SEQUENCE=GGATCACAACGTTTTTTGACACACCCTATAATGATGTATT . . .
=

Boulder-IO is a format for moving semistructured data between programs.
Primer3 receives its input and (by default) produces its output in a simple sub-
set of Boulder-IO. The README in the Primer3 distribution describes the
meanings of all these tag=value pairs in the input, as well as those in the out-
put. The output from primer3_core given the input above is:

PRIMER_SEQUENCE_ID=Overgo Example
PRIMER_PICK_INTERNAL_OLIGO=1
PRIMER_INTERNAL_OLIGO_MAX_MISHYB=36

www.manaraa.com

Primer3 on the WWW 379

PRIMER_INTERNAL_OLIGO_MIN_SIZE=36
PRIMER_INTERNAL_OLIGO_MAX_SIZE=36
PRIMER_INTERNAL_OLIGO_OPT_SIZE=36
PRIMER_INTERNAL_OLIGO_MIN_TM=10
PRIMER_INTERNAL_OLIGO_MAX_TM=90
PRIMER_INTERNAL_OLIGO_OPT_TM=70
PRIMER_INTERNAL_OLIGO_SELF_ANY=30
PRIMER_INTERNAL_OLIGO_SELF_END=30
PRIMER_INTERNAL_OLIGO_MISHYB_LIBRARY=humrep
PRIMER_PRODUCT_SIZE_RANGE=70-1000
PRIMER_EXPLAIN_FLAG=1
PRIMER_PAIR_WT_IO_QUALITY=1
PRIMER_PAIR_WT_PR_QUALITY=0
PRIMER_IO_WT_REP_SIM=1
PRIMER_IO_WT_TM_GT=0
PRIMER_IO_WT_TM_LT=0
PRIMER_IO_WT_SIZE_GT=0
PRIMER_IO_WT_SIZE_LT=0
PRIMER_NUM_RETURN=1
PRIMER_LEFT_INPUT=GAAATGTGTCCTTCCCCAGA
PRIMER_RIGHT_INPUT=GAGTTCACCCATACGACCTCA
SEQUENCE=GGATCACAACGTTTTTTGACACACCCTATAATGATGTATT . . .
PRIMER_LEFT_EXPLAIN=considered 1, ok 1
PRIMER_RIGHT_EXPLAIN=considered 1, ok 1
PRIMER_INTERNAL_OLIGO_EXPLAIN=considered 224,
long poly-x seq 12, ok 212
PRIMER_PAIR_EXPLAIN=considered 1, ok 1
PRIMER_PAIR_QUALITY=15.0000
PRIMER_LEFT_SEQUENCE=GAAATGTGTCCTTCCCCAGA
PRIMER_RIGHT_SEQUENCE=GAGTTCACCCATACGACCTCA
PRIMER_INTERNAL_OLIGO_SEQUENCE=ACTGTGCCTGCATTTGCA . . .
PRIMER_LEFT=99,20
PRIMER_RIGHT=198,21
PRIMER_INTERNAL_OLIGO=140,36
PRIMER_LEFT_TM=59.903
PRIMER_RIGHT_TM=59.981
PRIMER_INTERNAL_OLIGO_TM=72.885
PRIMER_LEFT_SELF_ANY=3.00
PRIMER_RIGHT_SELF_ANY=4.00
PRIMER_INTERNAL_OLIGO_SELF_ANY=8.00

www.manaraa.com

380 Rozen and Skaletsky

PRIMER_LEFT_SELF_END=0.00
PRIMER_RIGHT_SELF_END=1.00
PRIMER_INTERNAL_OLIGO_SELF_END=3.00
PRIMER_INTERNAL_OLIGO_MISHYB_SCORE=15.00, MLT1b
(MLT1b subfamily) - consensus sequence
PRIMER_LEFT_END_STABILITY=8.2000
PRIMER_RIGHT_END_STABILITY=8.2000
PRIMER_PAIR_COMPL_ANY=4.00
PRIMER_PAIR_COMPL_END=1.00
PRIMER_PRODUCT_SIZE=100
=

The second program, overgo.pl, takes the sequence of the 36-mer hybridiza-
tion probe from this output and produces the overlapping 22-mers that consti-
tute the overgo:

#!/usr/local/bin/perl5 -w

$/ = ”\n=\n”; # Set the record terminator.

while (<>) {
%rec = split /[=\n]/; # A DANGEROUS approach

to parsing the sequence.
for (keys %rec) { $rec{$_} =~ s/\n// }
$seq = $rec{’PRIMER_INTERNAL_OLIGO_SEQUENCE’};
next unless $seq;
print ”MARKER\t\t$rec{’PRIMER_SEQUENCE_ID’}\n”;
$left = substr($seq,0,22); # Get left oligo.
$r = substr($seq, 14); # Get the right

oligo,
$right = reverse($r); # reverse it, and
$right =~ tr/GATC/CTAG/; # complement it.
print ”LEFT_MID_OLIGO\t$left\n”;
print ”RIGHT_MID_OLIGO\t$right\n”;
print ”MAX_SCORE\t
$rec{’PRIMER_INTERNAL_OLIGO_MISHYB_SCORE’}\n”;
$gc = ($seq =~ tr/GC/GC/);
printf ”GC_content\t%d%%\n\n”, $gc * 100 / 36;

}

The statement $/ = ”\n=\n”; tells perl that each record is terminated by
an “=” sign on a line by itself (which is the standard record terminator for

www.manaraa.com

Primer3 on the WWW 381

Boulder-IO). The statement %rec = split /[=\n]/; parses Boulder-IO
record into the perl hash %rec. This method of parsing the output requires that
we know that “=” will not appear in the value part of any Boulder-IO tag=value
pair. For situations in which more robustness is required, use Lincoln Stein’s
perl Boulder module (available at http://www.genome.wi.mit.edu/
genome_software/other/boulder.html). Using this module
overgo.pl would be rewritten as:

#!/usr/local/bin/perl5 -w

use Boulder::Stream;
$in = new Boulder::Stream;
while ($rec = $in->read_record()) {
$seq

= $rec->get(’PRIMER_INTERNAL_OLIGO_SEQUENCE’);
next unless $seq;
print ”MARKER\t\t”,
$rec->get(’PRIMER_SEQUENCE_ID’), ”\n”;
$left = substr($seq,0,22); # Get the left

oligo.
$r = substr($seq, 14); # Get the right

oligo,
$right = reverse($r); # reverse it, and
$right =~ tr/GATC/CTAG/; # complement it.
print ”LEFT_MID_OLIGO\t$left\n”;
print ”RIGHT_MID_OLIGO\t$right\n”;
print ”MAX_SCORE\t”,
$rec->get(’PRIMER_INTERNAL_OLIGO_MISHYB_SCORE’),
”\n”;
$gc = ($seq =~ tr/GC/GC/);
printf ”GC_content\t%d%%\n\n”, $gc * 100 / 36;

}

Using the Boulder module is preferable because it is more robust. It will run
correctly even if someone puts an “=” in, for example, the value for
PRIMER_SEQUENCE_ID. The only disadvantage is that you need to get
the Boulder module before you can try it. The output for the input above is

MARKER Overgo Example
LEFT_MID_OLIGO ACTGTGCCTGCATTTGCAGAGA
RIGHT_MID_OLIGO TTACCTTAATTACCTCTCTGCA
MAX_SCORE 15.00, MLT1b (MLT1b subfamily) . . .

consensus sequence

www.manaraa.com

382 Rozen and Skaletsky

3.2.2 Calling primer3_core from perl

The second example is Primer3’s WWW interface itself. This code frag-
ment is adapted from the CGI script, primer3_www_results.cgi, which imple-
ments part of that interface. (The CGI module is available from http://
www.genome.wi.mit.edu/ftp/distribution/software/WWW/.)
Primer3_www.cgi calls primer3_core, with a flag requesting formatted output
(-format_output), and then grabs primer3_core’s output and tweaks it a bit:

#!/usr/local/bin/perl5 -w

...

use FileHandle; # Standard part of perl distribution

use IPC::Open3; # Standard part of perl distribution

use CGI;

 ...

 $query = new CGI;

 # $query now contains the parameters

 # to the cgi script

 ...

my @names = $query->param;

 ...

for (@names) {

next if ... # Some cgi parameters do not get

 # sent to primer3_core

 ...

 $line = ”$_=$v\n”;

push @input, $line; # Save a Boulder-IO line for

 # primer3_core’s eventual consumption.

 }

my $cmd = ”./primer3_core -format_output -strict_tags”

my $primer3_pid;

my ($childin, $childout) = (FileHandle->new, FileHandle->new);

 {

local $^W = 0;

$primer3_pid = open3($childin, $childout, $childout, $cmd);

 }

www.manaraa.com

Primer3 on the WWW 383

if (!$primer3_pid) {

print ”Cannot excecure $cmd:
$!\n$wrapup\n”;

 exit;

 }

print ”<pre>\n”;

print $childin @input;

$childin->close;

 my $cline;

while ($cline = $childout->getline) {

 if ($cline =~ /(.*)start len tm gc% any 3\’ seq/)

 {

 # Grap a particular line and

 # add hyperlinks to it:

 $cline = $1

. ”start”

. ”len”

. ”tm”

. ”gc% any 3\’ seq\n”

 }

 print $cline;

 }

print ”</pre>\n”;

waitpid $primer3_pid, 0;

 if ($? != 0 && $? != 64512) { # 64512 == -4

... # primer3_core exited with

an error code; alert the browser.

 }

Of course the -formated_output flag in $cmd is not an essential part of the
paradigm at work in this example. The script could have parsed Boulder-IO
output and then formatted or processed the information in some other way.

3.2.3 Other Uses of primer3_core as a Software Component

The two examples above show how to use primer3_core as a component in
a lightweight Unix pipeline (the overgo design example) and how to use perl’s
open3 command to start an execution of primer3_core and then grab its output
for further processing. An intermediate approach that is simpler to program

www.manaraa.com

384 Rozen and Skaletsky

than using open3 is to simply use the perl open command and then return
primer3_core’s output unmodified, e.g.

if (!open(PRIMER,“| $cmd”)) {
print “Cannot execute <pre>$cmd\n</pre>\n$wrapup”;
return;

}
print PRIMER @input;
close PRIMER; # primer3_core’s output is the same

as this script’s output.
if ($? != 0 && $? != 64512) { # 64512 == -4

. . . # $cmd exited with an error code.
}

At the Whitehead institute we have used primer3_core as part of an indus-
trial-strength primer design pipeline that includes vector clipping (identifica-
tion and electronic “removal” of vector arms), microsatellite repeat
identification, and automatic screening for vector contaminants. We have also
used it in pipelines that add constant 5' tails to each primer and in pipelines that
find a tiling of amplicons across a sequence. For this last application we set
PRIMER_FILE_FLAG=1 in primer3_core’s input, which directs
primer3_core to create files containing all acceptable left and right primers. A
different program then selects primers from these lists to produce the tiling.

3.3. Efficiency Considerations

The running time of Primer3 is seldom an issue for users of the WWW
interface. However, users of primer3_core for high volume applications should
be aware of the factors that determine running time. The most expensive
operation in selecting individual primers is a check against a mispriming or
mishyb library (the actual time needed for each oligo is a linear function of the
size of the library). The next most expensive operations are checks for oligo
self-complementarity, and, if Primer3 examines a large number of primer pairs,
checking oligo pairs for self-complementarity.

Primer3’s running time depends also on the size of the sequence in which to
select primers. Selecting a single primer pair anywhere within a 10-kb sequence
will take approx 10 times as long as selecting a single primer pair anywhere
within a 1-kb sequence (all other options being equal).

The following are additional determinants of Primer3’s running time:

• Strict as opposed to liberal constraints on oligos. Primer3 excludes primers based
on cheap computations (e.g., oligo melting temperature) before examining more

www.manaraa.com

Primer3 on the WWW 385

expensive-to-compute characteristics (e.g., similarity to mispriming library
entries) so relaxing cheap-to-compute constraints entails evaluation of a larger
number of expensive-to-compute constraints.

• Acceptable locations for primers (considering also constraints on product size).
This item is similar to the preceding one. Primer3 does not perform expensive
operations to characterize primers which, because of their location, can never be
part of an acceptable primer pair.

• The PRIMER_FILE input flag. This flag causes Primer3 to compute every char-
acteristic, including mispriming similarity and self-complementarity, of every
possibly acceptable primer.

• Cost of computing the objective function. There are two subcases.
• The objective function depends on expensive-to-compute characteristics of

oligos or primers, such as similarity to mispriming or mishyb libraries or
complementarity between primers in a pair. In this case Primer3 must per-
form these expensive computations on essentially all acceptable primers.

• The objective function depends on characteristics of primer pairs per se, such
as product melting temperature or product size. In this case Primer3 must
calculate whether each individual primer is acceptable, which usually requires
some expensive computation to determine acceptability.

(When the objective function depends neither on expensive characteristics
of individual primers nor on characteristics of primer pairs then Primer3
organizes its search so that it only checks expensive constraints on the best
primers.)

Acknowledgments
The development of Primer3 and the Primer3 WWW interface were funded

by Howard Hughes Medical Institute and by the National Institutes of Health,
National Human Genome Research Institute, under grants R01-HG00257 (to
David C. Page) and P50-HG00098 (to Eric S. Lander).

We gratefully acknowledge the support of Digital Equipment Corporation,
which provided the Alphas that we used for much of the development of
Primer3, and of Centerline Software, Inc., whose TestCenter memory error,
memory leak, and test coverage checker helped us discover and correct a num-
ber of otherwise latent errors in Primer3.

Primer3 is the most recent of a number of primer-picking programs imple-
mented at Whitehead Institute, starting with primer 0.5 (13). Primer3 started
as a reimplementation of Primer 0.5 as software component; the design of
Primer3 draws heavily on the design of Primer 0.5 and Primer v2 (Richard
Resnick) and the WWW interface designed by Richard Resnick for Primer v2.

Thanks to Alex Bortvin, Mark Daly, Nathan Siemers, and William J. Van
Etten for reviewing drafts of this chapter.

www.manaraa.com

386 Rozen and Skaletsky

References
1. Dieffenbach, C. W. and Dveksler, G. S. (1995) PCR Primer A Laboratory Manual.

Cold Spring Harbor Laboratory Press, Cold spring Harbor, NY.
2. Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds. (1990) PCR

Protocols A Guide to Methods and Applications. Academic Press, San Diego, CA.
3. Rychlik, W. (1993) Selection of primers for polymerase chain reaction, in Meth-

ods in Molecular Biology, vol. 15: PCR Protocols: Current Methods and Applica-
tions (White, B. A., ed.) Humana, Totowa, NJ, pp. 31–40.

4. Wetmur, J. G. (1991) DNA probes: applications of the principles of nucleic acid
hybridization. Crit. Rev. Biochem. Mol. Biol. 26, 227–259.

5. Schuler, G. D. et al. (1996) A gene map of the human genome. Science 274,
540–546.

6. Wang, D. G. et al. (1998) Large-scale identification, mapping and genotyping of
single-nucleotide polymorphisms in human genome. Science 280, 1077–1082.

7. Harbison, S. and Steele, G. (1995) C A Reference Manual, 4th ed. Prentice Hall,
Englewood Cliffs, NJ.

8. Dougherty, D. (1991) POSIX Programmer’s Guide. O’Reilly, Cambridge, MA.
9. Gundavaram, S. (1997) CGI Programming with Perl. O’Reilly, Cambridge MA.

10. Stein, L. D. (1997) How to Set Up and Maintain a Web Site, 2nd ed. Addison-
Wesley, Reading, MA.

11. Wall, L., Christiansen, T., and Schwartz, R. L. (1996) Programming Perl, 2nd ed.
O’Reilly, Cambridge, MA.

12. Rychlik, W. and Rhoads, R. E. (1989) A computer program for choosing optimal
oligonucleotides for filter hybridization, sequencing and in vitro amplification of
DNA. Nucleic Acids Res. 17, 8543–8551.

13. Daly, M. J., Lincoln S. E., and Lander E. S. (1991). “PRIMER”, unpublished
software, Whitehead Institute/MIT Center for Genome Research. Available at
http://www.genome.wi.mit.edu/ftp/pub/software/primer.
0.5, and via anonymous ftp to genome.wi.mit.edu, directory /pub/
software/primer.0.5.

14. Hillier, L. and Green, P. (1991) OSP: an oligonucleotide selection program. PCR
Meth. Appl. 1, 124–128. Documentation available at http://genome.
wustl.edu/gsc/manual/protocols/ospdocs.html. OSP is avail-
able from the author on request.

15. Smit, A. F. A. (1996) The origin of interspersed repeats in the human genome.
Curr. Opin. Genet. Devel. 6, 743–748.

16. Breslauer, K. J., Frank, R., Bloeker, H., and Marky L. A. (1986) Predicting DNA
duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750

17. Rychlik, W., Spencer, W. J., and Rhoads, R. E. (1990) Optimization of the
annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 18,
6409–6412.

18. Stein, L. (1997) How perl saved the human genome project. Dr Dobb’s Journal
Spring 1997 Special Report on Software Careers. Available at http://
www.ddj.com/ddj/1997/careers1/stei.htm.

